论文标题

在图形约束下动态的社会学习

Dynamic social learning under graph constraints

论文作者

Avrachenkov, Konstantin, Borkar, Vivek S., Moharir, Sharayu, Shah, Suhail M.

论文摘要

我们引入了一个图形受限的动态选择模型,并通过积极的$α$均匀奖励建模的强化。我们表明,它的经验过程可以将其写入马尔可夫噪声的随机近似递归,具有与某些顶点加强随机行走相同的概率定律。我们使用这种等价性表明,对于$α> 0 $,当“退火”时,​​渐近结果将在特定限制意义上围绕最佳,而慢慢地让$α\ uparrow \ infty $缓慢。

We introduce a model of graph-constrained dynamic choice with reinforcement modeled by positively $α$-homogeneous rewards. We show that its empirical process, which can be written as a stochastic approximation recursion with Markov noise, has the same probability law as a certain vertex reinforced random walk. We use this equivalence to show that for $α> 0$, the asymptotic outcome concentrates around the optimum in a certain limiting sense when `annealed' by letting $α\uparrow\infty$ slowly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源