论文标题

基于人体变异性分数的因果推断:时间变化治疗的联合影响的两步估计

Within-Person Variability Score-Based Causal Inference: A Two-Step Estimation for Joint Effects of Time-Varying Treatments

论文作者

Usami, Satoshi

论文摘要

行为科学研究人员对使用纵向数据将人际关系与人之间的差异(稳定特征)进行分解浓厚的兴趣。在本文中,我们提出了一种基于人体变异性评分的因果推断的方法,用于通过有效控制稳定的性状来估计随时间变化的连续处理的关节效应。在解释了假定的数据生成过程并提供了稳定特征因素,人体内部变异性评分以及在人际关系层面上的时间变化治疗的联合影响的正式定义之后,我们介绍了提出的方法,该方法由两步分析组成。首先,通过基于最佳线性相关性通过结构方程建模(SEM)来计算每个人的人体内变异得分,该人与该人的稳定特征分类,首先是使用权重计算的。然后,使用计算出的人体内变异性分数,通过潜在的结果方法(MSMS)或结构嵌套平均模型(SNMM)来估算因果参数。与完全依赖于SEM的方法不同,目前的方法不假定在人际关系级别观察到的时变混杂器的线性。我们强调使用SNMM具有G估计的使用,因为它具有双重鲁棒的特性,可以在观察到的时间变化的混杂因素与在人际关系级别上的处理/预测因子和结果在功能上相关。通过仿真,我们表明所提出的方法可以很好地恢复因果参数,并且如果一个人不正确地说明稳定的性状,则因果估计可能会严重偏差。还提供了使用有关睡眠习惯和心理健康状况的数据的经验应用,也提供了青少年队列研究。

Behavioral science researchers have shown strong interest in disaggregating within-person relations from between-person differences (stable traits) using longitudinal data. In this paper, we propose a method of within-person variability score-based causal inference for estimating joint effects of time-varying continuous treatments by effectively controlling for stable traits. After explaining the assumed data-generating process and providing formal definitions of stable trait factors, within-person variability scores, and joint effects of time-varying treatments at the within-person level, we introduce the proposed method, which consists of a two-step analysis. Within-person variability scores for each person, which are disaggregated from stable traits of that person, are first calculated using weights based on a best linear correlation preserving predictor through structural equation modeling (SEM). Causal parameters are then estimated via a potential outcome approach, either marginal structural models (MSMs) or structural nested mean models (SNMMs), using calculated within-person variability scores. Unlike the approach that relies entirely on SEM, the present method does not assume linearity for observed time-varying confounders at the within-person level. We emphasize the use of SNMMs with G-estimation because of its property of being doubly robust to model misspecifications in how observed time-varying confounders are functionally related with treatments/predictors and outcomes at the within-person level. Through simulation, we show that the proposed method can recover causal parameters well and that causal estimates might be severely biased if one does not properly account for stable traits. An empirical application using data regarding sleep habits and mental health status from the Tokyo Teen Cohort study is also provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源