论文标题
iohanalyzer:详细的迭代优化启发式绩效分析
IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics
论文作者
论文摘要
基准测试和绩效分析在理解迭代优化启发式方法(IOH)的行为中起着重要作用,例如本地搜索算法,遗传和进化算法,贝叶斯优化算法等。但是,此任务,涉及手动设置,执行和分析,并且可以单独进行实验,并且可以通过单独的平台和平台进行策略和一体式。为此,我们提出了Iohanalyzer,这是一种新的用户友好工具,用于分析IOHS性能数据的分析,比较和可视化。 Iohanalyzer在R和C ++中实施是完全开源的。它可以在Cran和Github上找到。 Iohanalyzer提供了有关固定目标运行时间以及具有实值的CODOMAN,单目标优化任务的基准算法的固定预算性能的详细统计信息。在几个基准问题上进行性能聚集是可能的,例如,以经验累积分布函数的形式。 Iohanalyzer比其他性能分析软件包的关键优势是其高度交互式设计,它使用户可以指定对其实验最有用的性能指标,范围和粒度,并且不仅可以分析性能迹线,还可以分析动态状态参数的演变。 Iohanalyzer可以直接从主要基准测试平台处理性能数据,包括可可平台,Nevergrad,SOS平台和Iohexperimenter。提供了R编程接口,供用户更喜欢对实现的功能进行更好的控制。
Benchmarking and performance analysis play an important role in understanding the behaviour of iterative optimization heuristics (IOHs) such as local search algorithms, genetic and evolutionary algorithms, Bayesian optimization algorithms, etc. This task, however, involves manual setup, execution, and analysis of the experiment on an individual basis, which is laborious and can be mitigated by a generic and well-designed platform. For this purpose, we propose IOHanalyzer, a new user-friendly tool for the analysis, comparison, and visualization of performance data of IOHs. Implemented in R and C++, IOHanalyzer is fully open source. It is available on CRAN and GitHub. IOHanalyzer provides detailed statistics about fixed-target running times and about fixed-budget performance of the benchmarked algorithms with a real-valued codomain, single-objective optimization tasks. Performance aggregation over several benchmark problems is possible, for example in the form of empirical cumulative distribution functions. Key advantages of IOHanalyzer over other performance analysis packages are its highly interactive design, which allows users to specify the performance measures, ranges, and granularity that are most useful for their experiments, and the possibility to analyze not only performance traces, but also the evolution of dynamic state parameters. IOHanalyzer can directly process performance data from the main benchmarking platforms, including the COCO platform, Nevergrad, the SOS platform, and IOHexperimenter. An R programming interface is provided for users preferring to have a finer control over the implemented functionalities.