论文标题
社交互联网中边缘计算的计算资源分配
Computational Resource Allocation for Edge Computing in Social Internet-of-Things
论文作者
论文摘要
对于许多缺乏计算功能的设备,可以利用The Internet(IoT)网络的异质性(IoT)网络的异质性。开发了一种分配边缘和移动计算机的智能机制,以符合要求外部计算资源的设备的需求。在本文中,我们采用了社交物联网和机器学习的概念来降低分配适当的边缘计算机的复杂性。我们提出了一个框架,该框架在围绕具有牢固社会关系的值得信赖的同伴中检测不同的设备社区。之后,我们训练机器学习算法,考虑了请求者的多个计算和非计算功能以及边缘计算机,以预测属于请求者同一社区的潜在候选人处理所需任务所需的总时间。通过将其应用于实际数据集,我们观察到所提出的框架为移动计算机分配提供了令人鼓舞的结果。
The heterogeneity of the Internet-of-things (IoT) network can be exploited as a dynamic computational resource environment for many devices lacking computational capabilities. A smart mechanism for allocating edge and mobile computers to match the need of devices requesting external computational resources is developed. In this paper, we employ the concept of Social IoT and machine learning to downgrade the complexity of allocating appropriate edge computers. We propose a framework that detects different communities of devices in SIoT enclosing trustworthy peers having strong social relations. Afterwards, we train a machine learning algorithm, considering multiple computational and non-computational features of the requester as well as the edge computers, to predict the total time needed to process the required task by the potential candidates belonging to the same community of the requester. By applying it to a real-world data set, we observe that the proposed framework provides encouraging results for mobile computer allocation.