论文标题

非理性的非亚洲统计数据,用于非高级概括零模式

Irrational Non-Abelian Statistics for Non-Hermitian Generalization of Majorana Zero Modes

论文作者

Zhao, Xiao-Ming, Guo, Cui-Xian, Yang, Meng-Lei, Heng-Wang, Liu, Wu-Ming, Kou, Su-Peng

论文摘要

在凝聚的物理学中,Majorana零模式(或Majoraana fermions)的非亚伯统计非常重要,非常充满异国情调且完全健壮。搜索Majorana零模式并验证相应的非亚洲统计数据的竞赛成为凝结物理学的重要边界。在这封信中,我们将Majorana零模式概括为非Hermitian(NH)拓扑系统,这些模式显示出与Hermitian同行的通用但完全不同的属性。基于NH Majorana零模式,正交和非局部主要量子置量子位均得到很好的定义。特别是,由于粒子对称性破坏,NH Majorana零模式具有非理性的非亚洲统计量,其连续可调的编织浆果相位从PI/8到3pi/8。这与固定的编织浆果相PI/4的通常非亚伯统计完全不同,并成为“非理性拓扑现象”的一个例子。一维NH Kitaev模型被视为一个示例,以数字验证两个NH Majorana零模式的非理性非亚伯统计。数值结果与理论预测完全一致。借助编织这两个零模式,可以达到PI/8栅极,因此可以实现通用拓扑量子计算。

In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the corresponding non-Abelian statistics becomes an important frontier in condensed matter physics. In this letter, we generalize the Majorana zero modes to non-Hermitian (NH) topological systems that show universal but quite different properties from their Hermitian counterparts. Based on the NH Majorana zero modes, the orthogonal and nonlocal Majorana qubits are well defined. In particular, due to the particle-hole-symmetry breaking, NH Majorana zero modes have irrational non-Abelian statistics with continuously tunable braiding Berry phase from pi/8 to 3pi/8. This is quite different from the usual non-Abelian statistics with fixed braiding Berry phase pi/4 and becomes an example of "irrational topological phenomenon". The one-dimensional NH Kitaev model is taken as an example to numerically verify the irrational non-Abelian statistics for two NH Majorana zero modes. The numerical results are exactly consistent with the theoretical prediction. With the help of braiding these two zero modes, the pi/8 gate can be reached and thus universal topological quantum computation becomes possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源