论文标题
量子错误校正代码的统计力学
Statistical mechanics of quantum error correcting codes
论文作者
论文摘要
我们研究了在局部Clifford Unitaries的杂种动力学和一维当地的Pauli测量中生成的稳定量误差校正代码(QECC)。建立在1)将子区域与其纠缠属性相关的通用公式,以及2)先前确定的纠缠入口和域基础自旋模型的域壁自由能之间的映射,我们提出了QECC的统计机械描述,以“纠缠壁壁”的范围”。此类域壁的自由能通常具有来自其“表面能”的领先体积定律项,以及来自其横向波动的热力学熵的子体积法校正。这些最容易由液态气界面的毛细管波理论来解释,我们将其用作说明性工具。我们表明,信息理论的解耦标准对应于域壁的几何解耦,这进一步导致QECC的“连续代码距离”作为跨域壁的能量和熵的交叉长度标度相当。因此,连续的代码距离以系统大小为自由能的熵术语,从而有限的代码速率与本地无法检测到的错误相差。我们用数值证据支持这些对应关系,其中我们发现毛细血管波理论描述了QECC的许多定性特征。我们还讨论了何时以及为什么不这样做。
We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford unitaries and local Pauli measurements in one dimension. Building upon 1) a general formula relating the error-susceptibility of a subregion to its entanglement properties, and 2) a previously established mapping between entanglement entropies and domain wall free energies of an underlying spin model, we propose a statistical mechanical description of the QECC in terms of "entanglement domain walls". Free energies of such domain walls generically feature a leading volume law term coming from its "surface energy", and a sub-volume law correction coming from thermodynamic entropies of its transverse fluctuations. These are most easily accounted for by capillary-wave theory of liquid-gas interfaces, which we use as an illustrative tool. We show that the information-theoretic decoupling criterion corresponds to a geometric decoupling of domain walls, which further leads to the identification of the "contiguous code distance" of the QECC as the crossover length scale at which the energy and entropy of the domain wall are comparable. The contiguous code distance thus diverges with the system size as the subleading entropic term of the free energy, protecting a finite code rate against local undetectable errors. We support these correspondences with numerical evidence, where we find capillary-wave theory describes many qualitative features of the QECC; we also discuss when and why it fails to do so.