论文标题

四个立方体

Four Cubes

论文作者

Łukaszyk, Szymon

论文摘要

提出了对$ \ {0,1 \}^n $ boolean空间中构建的四个图的属性的简短调查。根据丑陋的小鸭定理,定义了稀疏分布式记忆模型中人造神经元的柔性激活功能。 $ n $ -cube的2-FACE三角剖分的Cotan Laplacian具有对应于$ \ {0,1 \}^n $ space的锤距距离分布的eigenvalues的归化频谱。 Degenerate spectrum of eigenvalues of the cotan Laplacian defined on the graph comprising $2^n$ 2-face triangulated $n$-cubes sharing common origin includes all integers from 0 to 3$n$, without the eigenvalue of 3$n$-1 (multiplicities of the same eigenvalues form A038717 OEIS sequence), while the multiplicities of the same eigenvalues $ [ - n \ sqrt {2},n \ sqrt {2}] $的$ 2^n $ -cube形式trinomial三角形的邻接矩阵。还讨论了该图的距离矩阵,提供了进一步的OEI序列及其与Buckminster Fuller Vector平衡的关系。

A short survey on the properties of four graphs constructed in $\{0, 1\}^n$ Boolean space is presented. Flexible activation function of an artificial neuron in a sparse distributed memory model is defined on the basis of the Ugly duckling theorem. Cotan Laplacian on 2-face triangulation of $n$-cube has degenerate spectrum of eigenvalues corresponding to the Hamming distance distribution of $\{0, 1\}^n$ space. Degenerate spectrum of eigenvalues of the cotan Laplacian defined on the graph comprising $2^n$ 2-face triangulated $n$-cubes sharing common origin includes all integers from 0 to 3$n$, without the eigenvalue of 3$n$-1 (multiplicities of the same eigenvalues form A038717 OEIS sequence), while the multiplicities of the same eigenvalues $[-n\sqrt{2}, n\sqrt{2}]$ of the adjacency matrix of $2^n$-cube form trinomial triangle. The distance matrix of this graph, providing further OEIS sequences, as well as its relation with Buckminster Fuller vector equilibrium is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源