论文标题

陡峭的潜在井中的征费飞行:Langevin建模与对能量景观的直接响应

Levy flights in steep potential wells: Langevin modeling versus direct response to energy landscapes

论文作者

Garbaczewski, P., Zaba, M.

论文摘要

我们研究了两个系统具有共同的(渐近,固定,稳态)靶PDF的假设,我们研究了Lévy驱动的Langevin随机系统的非Langevin亲戚。分数Langevin-fokker-Planck场景中平衡的放松是由于将保守力场限制在随机运动上的影响。非兰格文替代方案具有跳跃强度对过程发生的能量(潜在)景观的内置直接响应。我们重新审视了超谐式潜在井中的Lévy飞行问题,重点是极端陡峭的井政权,并解决了其(光谱)与LévyJump-type工艺的“接近度”的问题,该过程被限制在有限的包装中,并具有不可渗透的(尤其是反映)边界。相关的随机系统“在盒子/间隔中”有望具有具有合理边界条件作为合法运动发生器的分数laplacian。问题是,与经过充分研究的迪里奇(Dirichlet)边界问题相比,反映边界条件的概念以及在反映边界(或急剧)在反映边界的附近的相关随机过程的实现并不明确地解决了莱维过程。这种歧义扩展到了分数运动发生器,对于neumann条件的非局部类似物与边界处的路径反射方案无关,尊重无法穿透的假设。

We investigate the non-Langevin relative of the Lévy-driven Langevin random system, under an assumption that both systems share a common (asymptotic, stationary, steady-state) target pdf. The relaxation to equilibrium in the fractional Langevin-Fokker-Planck scenario results from an impact of confining conservative force fields on the random motion. A non-Langevin alternative has a built-in direct response of jump intensities to energy (potential) landscapes in which the process takes place. We revisit the problem of Lévy flights in superharmonic potential wells, with a focus on the extremally steep well regime, and address the issue of its (spectral) "closeness" to the Lévy jump-type process confined in a finite enclosure with impenetrable (in particular reflecting) boundaries. The pertinent random system "in a box/interval" is expected to have a fractional Laplacian with suitable boundary conditions as a legitimate motion generator. The problem is, that in contrast to amply studied Dirichlet boundary problems, a concept of reflecting boundary conditions and the path-wise implementation of the pertinent random process in the vicinity of (or sharply at) reflecting boundaries are not unequivocally settled for Lévy processes. This ambiguity extends to fractional motion generators, for which nonlocal analogs of Neumann conditions are not associated with path-wise reflection scenarios at the boundary, respecting the impenetrability assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源