论文标题
基于多卫星观察计划的鸿沟和征服框架的元位和精确算法的合奏
Ensemble of meta-heuristic and exact algorithm based on the divide and conquer framework for multi-satellite observation scheduling
论文作者
论文摘要
卫星观察计划在提高地球观测系统的效率方面起着重要作用。为了解决大规模的多卫星观察计划问题,本文提出了基于划分和互动框架(EHE-DCF)的元序列和精确算法的集合,包括任务分配阶段和任务计划阶段。在任务分配阶段,每个任务分别基于概率选择和源自蚂蚁菌落优化和禁忌搜索的tabu机制分配给适当的轨道。在任务调度阶段,我们为每个轨道构建一个任务调度模型,并使用精确的方法(即分支和绑定,B&B)来解决此模型。迭代进行任务分配和任务调度阶段以获得有希望的解决方案。为了验证EHE-DCF的性能,我们将其与B&B,三个基于分裂和基础的元元素术和最先进的元式 - 纯武器进行了比较。实验结果表明,与现有算法相比,EHE-DCF可以获得更高的计划利润并完成更多任务。 EHE-DCF对于大规模的卫星观察计划问题特别有效。
Satellite observation scheduling plays a significant role in improving the efficiency of Earth observation systems. To solve the large-scale multi-satellite observation scheduling problem, this paper proposes an ensemble of meta-heuristic and exact algorithm based on a divide-and-conquer framework (EHE-DCF), including a task allocation phase and a task scheduling phase. In the task allocation phase, each task is allocated to a proper orbit based on a meta-heuristic incorporated with a probabilistic selection and a tabu mechanism derived from ant colony optimization and tabu search respectively. In the task scheduling phase, we construct a task scheduling model for every single orbit, and use an exact method (i.e., branch and bound, B&B) to solve this model. The task allocation and task scheduling phases are performed iteratively to obtain a promising solution. To validate the performance of EHE-DCF, we compare it with B&B, three divide-and-conquer based meta-heuristics, and a state-of-the-art meta-heuristic. Experimental results show that EHE-DCF can obtain higher scheduling profits and complete more tasks compared with existing algorithms. EHE-DCF is especially efficient for large-scale satellite observation scheduling problems.