论文标题
在硅双量子点中自旋穿梭
Spin shuttling in a silicon double quantum dot
论文作者
论文摘要
量子设备的不同节点之间的量子信息传输是量子处理器的挑战性功能之一。在自旋Qubits的背景下,可以通过半导体量子点之间的相干电子自旋穿梭来满足此需求。在这里,我们从理论上研究了两个量子点之间的最小版自旋穿梭。为此,我们分析了一个电子占据的硅双重量子点(DQD)中令人讨厌的扫描过程中电子的动力学。研究了自旋运输的可能性和局限性。不均匀磁场中的自旋轨道相互作用和Zeeman效应对自旋穿梭起着重要作用,并包括在我们的模型中。将位置,自旋和山谷自由度融为一体的相互作用在光谱中打开了许多避免的穿越,从而可以进行绝糖过渡和干扰路径。通过数值模拟和基于Landau - Zener问题解决方案的近似分析模型来探索单个和重复的自旋穿梭协议的结果。我们发现,旋转不忠于$ 1-f_s \ Lessim 0.002 $,其水平速度相对快速的速度为$α= 600 \,μ$ ev/ns是可行的,用于最佳选择参数或使用建设性干扰。
The transport of quantum information between different nodes of a quantum device is among the challenging functionalities of a quantum processor. In the context of spin qubits, this requirement can be met by coherent electron spin shuttling between semiconductor quantum dots. Here we theoretically study a minimal version of spin shuttling between two quantum dots. To this end, we analyze the dynamics of an electron during a detuning sweep in a silicon double quantum dot (DQD) occupied by one electron. Possibilities and limitations of spin transport are investigated. Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling and are included in our model. Interactions that couple the position, spin and valley degrees of freedom open a number of avoided crossings in the spectrum allowing for diabatic transitions and interfering paths. The outcomes of single and repeated spin shuttling protocols are explored by means of numerical simulations and an approximate analytical model based on the solution of the Landau--Zener problem. We find that a spin infidelity as low as $1-F_s\lesssim 0.002$ with a relatively fast level velocity of $α= 600\, μ$eV/ns is feasible for optimal choices of parameters or by making use of constructive interference.