论文标题
半经典$ P $ - 双曲空间中的炉子
Semiclassical $p$-branes in hyperbolic space
论文作者
论文摘要
分析了从路径积分和Wheeler-Dewitt方程的柔双曲线背景中$ p $ branes的狄拉克动作的一环效应。比较等效量化程序的目的是详细研究与一环校正相关的半经典近似和差异的有效性。这与全息循环的自下而上的方法一致。我们采用热内核正则化方法进行量化程序,并在二维双曲空间中对大地测量学的一环校正进行了详细的研究,并在三维双曲空间中的半球校正。我们表明,通过热核的高能量膨胀给出的差异可以通过与半经典近似和几何性质的兼容性进行分类。
The one-loop effects to the Dirac action of $p$-branes in a hyperbolic background from the path integral and the solution of the Wheeler-DeWitt equation are analysed. The objective of comparing the equivalent quantization procedures is to study in detail the validity of the semiclassical approximation and divergences associated to one-loop corrections. This is in line with a bottom-up approach to holographic Wilson loops. We employ the heat kernel regularization method for both quantization procedures and we study in great detail one-loop corrections to geodesics in a 2-dimensional hyperbolic space and semi-spheres in a 3-dimensional hyperbolic space. We show that the divergences, given by the high energy expansion of the heat kernel, can be classified by their compatibility with the semiclassical approximation and geometric nature.