论文标题

非线性电动力学和稳定的光子轨道的测地

Geodesic of nonlinear electrodynamics and stable photon orbits

论文作者

Habibina, A S., Ramadhan, H. S.

论文摘要

我们研究了多项式麦克斯韦拉格朗日人(非线性电动力学(NLED)中的模型子类)中带有带电的黑洞的大地测量学。具体来说,我们考虑了克鲁格洛夫,幂律和艾on-beato-garcia型号的黑洞。我们对相应的零结合状态的探索表明,光子可以在相应的地平线外绕稳定半径的极端黑洞绕。其背后的原因是众所周知的定理,即nled背景中的光子沿其自身{\ it有效}几何形状传播。这种非线性能够将有效电势的局部最小值转移到其相应的外界。对于无效散射状态,我们可以从黑色孔上校正较弱的挠度角。我们排除了幂律模型为物理,因为其挠度角并未在消失电荷的极限下降低到施瓦茨柴尔德。

We study the geodesics of charged black holes in polynomial Maxwell Lagrangians, a subclass of models within the nonlinear electrodynamics (NLED). Specifically, we consider black holes in Kruglov, power-law, and Ayon-Beato-Garcia models. Our exploration on the corresponding null bound states reveals that photon can orbit the extremal black holes in stable radii outside the corresponding horizon. The reason behind this is the well-known theorem that a photon in a NLED background propagates along its own {\it effective} geometry. This nonlinearity is able to shift the local minimum of the effective potential away from its corresponding outer horizon. For the null scattering states we obtain corrections to the weak deflection angle off the black holes. We rule out the power-law model to be physical since its deflection angle does not reduce to the Schwarzschild in the limit of the vanishing charge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源