论文标题

超声梁形成的域适应

Domain Adaptation for Ultrasound Beamforming

论文作者

Tierney, Jaime, Luchies, Adam, Khan, Christopher, Byram, Brett, Berger, Matthew

论文摘要

超声B模式图像是从从传感器阵列中的每个元素中获得的数据中创建的,该过程称为波束形成。波束形成的目标是从指定的空间位置增强信号,同时减少所有其他位置的信号。在临床系统上,通过延迟和-MUM(DAS)算法来完成光束形成。 DAS是有效的,但在噪声水平高的患者中失败,因此已经提出了各种自适应光束器。最近,为此任务开发了深度学习方法。通过深度学习方法,波束形成通常被构成回归问题,其中已知清洁,地面数据并通常模拟。但是,对于体内数据,由于模拟数据和体内数据之间的域移动,因此很难收集地面真相信息,并且在应用于体内数据的模拟数据表现不佳时受到模拟数据表现不佳的深度网络非常困难。在这项工作中,我们通过学习通过新颖的域自适应方案来利用模拟数据和在体内数据中未标记的深度网络光束器来校正域移动。在我们的情况下,一个挑战是,域转移既有嘈杂的输入,又存在清洁输出。我们通过扩展周期一致的生成对抗网络来应对这一挑战,在该网络中,我们利用合成模拟和真实体内域之间的图表来确保学习界的波束形式捕获噪声和干净的体内数据的分布。与现有的波束成型技术相比,我们在模拟呼吸囊肿和体内肝数据时,我们获得了一致的体内图像质量改进。

Ultrasound B-Mode images are created from data obtained from each element in the transducer array in a process called beamforming. The beamforming goal is to enhance signals from specified spatial locations, while reducing signal from all other locations. On clinical systems, beamforming is accomplished with the delay-and-sum (DAS) algorithm. DAS is efficient but fails in patients with high noise levels, so various adaptive beamformers have been proposed. Recently, deep learning methods have been developed for this task. With deep learning methods, beamforming is typically framed as a regression problem, where clean, ground-truth data is known, and usually simulated. For in vivo data, however, it is extremely difficult to collect ground truth information, and deep networks trained on simulated data underperform when applied to in vivo data, due to domain shift between simulated and in vivo data. In this work, we show how to correct for domain shift by learning deep network beamformers that leverage both simulated data, and unlabeled in vivo data, via a novel domain adaption scheme. A challenge in our scenario is that domain shift exists both for noisy input, and clean output. We address this challenge by extending cycle-consistent generative adversarial networks, where we leverage maps between synthetic simulation and real in vivo domains to ensure that the learned beamformers capture the distribution of both noisy and clean in vivo data. We obtain consistent in vivo image quality improvements compared to existing beamforming techniques, when applying our approach to simulated anechoic cysts and in vivo liver data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源