论文标题

基于主题的社区搜索空间社会网络(技术报告)

Topic-based Community Search over Spatial-Social Networks (Technical Report)

论文作者

Al-Baghdadi, Ahmed, Lian, Xiang

论文摘要

最近,由于其广泛的现实应用程序,例如活动组织,朋友的推荐,电子承诺广告等,社区搜索问题引起了极大的关注。给定查询顶点,社区搜索问题发现包含查询顶点的密集子图。在社交网络中,用户有多个登机位置,影响力得分和个人资料信息(关键字)。在社交网络上解决CS问题的大多数研究通常会忽略社区中的此类信息。在本文中,我们提出了一个新颖的问题,它将社区搜索命名为“空间社会网络(TCS-SSN)”,该搜索具有很高的社会影响力,较小的旅行时间和涵盖某些关键字的社区。为了解决空间社会网络上的TCS-SSN问题,我们设计了有效的修剪技术来减少问题搜索空间。我们还提出了一种有效的索引机制,即社会空间索引,以促进社区查询,并通过索引遍历开发有效的查询回答算法。我们通过在各种参数设置下对现实世界和合成数据集的广泛实验来验证修剪技术,索引机制以及查询处理算法的效率和有效性。

Recently, the community search problem has attracted significant attention, due to its wide spectrum of real-world applications such as event organization, friend recommendation, advertisement in e-commence, and so on. Given a query vertex, the community search problem finds dense subgraph that contains the query vertex. In social networks, users have multiple check-in locations, influence score, and profile information (keywords). Most previous studies that solve the CS problem over social networks usually neglect such information in a community. In this paper, we propose a novel problem, named community search over spatial-social networks (TCS-SSN), which retrieves community with high social influence, small traveling time, and covering certain keywords. In order to tackle the TCS-SSN problem over the spatial-social networks, we design effective pruning techniques to reduce the problem search space. We also propose an effective indexing mechanism, namely social-spatial index, to facilitate the community query, and develop an efficient query answering algorithm via index traversal. We verify the efficiency and effectiveness of our pruning techniques, indexing mechanism, and query processing algorithm through extensive experiments on real-world and synthetic data sets under various parameter settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源