论文标题
在$ \ overline {\ mathcal a} _3 $上的有效表面锥上
On the cone of effective surfaces on $\overline{\mathcal A}_3$
论文作者
论文摘要
我们确定有效表面的四维圆锥的五个极端有效射线$ \ edline {\ Mathcal a} _3 $的模量空间$ {\ MATHCAL A} _3 $ a} _3 $ a} _3 $复杂的主要主要极性的亚伯利亚三分之三的复杂的cone cone cone cone as cone surf surf surf surf surf surf surf surf surf。由于我们定义的表面可以在任何属$ g \ ge 3 $中定义,因此我们进一步猜测它们会在任何$ g \ ge 3 $的$ {\ Mathcal a} _g $的完美锥形圆锥形紧凑型上生成有效表面的锥。
We determine five extremal effective rays of the four-dimensional cone of effective surfaces on the toroidal compactification $\overline{\mathcal A}_3$ of the moduli space ${\mathcal A}_3$ of complex principally polarized abelian threefolds, and we conjecture that the cone of effective surfaces is generated by these surfaces. As the surfaces we define can be defined in any genus $g\ge 3$, we further conjecture that they generate the cone of effective surfaces on the perfect cone toroidal compactification of ${\mathcal A}_g$ for any $g\ge 3$.