论文标题

量子场的有效熵与重力结合

Effective entropy of quantum fields coupled with gravity

论文作者

Dong, Xi, Qi, Xiao-Liang, Shangnan, Zhou, Yang, Zhenbin

论文摘要

纠缠熵量量化了量子状态的不确定性量。对于弯曲空间中的量子场,对于固定的背景几何形状,量子场理论自由度的纠缠熵已明确。在本文中,我们通过包括动力学重力提出了量子场理论纠缠熵的概括。称为有效熵的广义量及其Renyi熵概括是通过在我们正在研究的地区边界上具有共差异的复制几何形状积分的重力积分的分析延续来定义的。我们讨论了以规格不变的方式定义区域的不同方法,并表明有效熵满足量子极端表面公式。当量子场带有大量纠缠时,量子极端表面可以具有拓扑过渡,然后出现纠缠岛区域。我们的结果将全息熵的Hubeny-rangamani-takayanagi公式(带有量子校正)到没有渐近ADS边界的一般几何形状上,并为解决问题提供了更坚实的框架,例如在渐近平方赛中蒸发黑色孔的页面曲线。我们将公式应用于两个示例系统,一个封闭的二维宇宙和一个四维最大扩展的Schwarzchild黑洞。我们讨论了随机张量网络模型中有效熵的类似物,该模型在一般动力学几何形状中提供了对量子信息性能的更具体理解。通过引入Ancilla系统,我们展示了纠缠岛中的量子信息如何在依赖状态依赖和观察者依赖的图中重建。我们研究封闭的宇宙(没有空间边界),并讨论它与开放宇宙的关系。

Entanglement entropy quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a gravitational path integral on replica geometry with a co-dimension-$2$ brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. By introducing ancilla systems, we show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源