论文标题
标准模型背后的固有量子力学?
Intrinsic quantum mechanics behind the Standard Model?
论文作者
论文摘要
我们建议量规组SU(3),SU(2)和U(1)在U(3)中共享共同的起源。我们将Lie Group U(3)作为Baryons的内在配置空间。重型态的自发对称性断裂为HIGGS机制选择了U(2)亚组。希格斯场进入对称性断裂,通过在两个扇区之间交换一个量子的作用来关联强和电气的能量尺度。这将希格斯的潜力塑造为第四阶。最近,固有的量子力学已经提出了从理论(EPL124-2018)的Cabibbo角度和HIGGS耦合到衡量玻色子的预测(EPL125-2019)。以前,它给出了质子中U和D夸克的核子质量和Parton分布的功能(EPL102-2013)。它给出了封闭形式(IJMPA30-2015)和N和Delta频谱的Higgs质量的准确方程式,基本上没有缺失共振(ARXIV:1109.4732)。内在空间应与内部空间区分开。固有空间是非空间的,即内在空间中没有重力。配置变量就像运动发电机对实验室空间激发的广义自旋变量:动量,自旋和拉普拉斯 - 旋转lenz运算符。 Baryon动力学位于U(3)上的Hamiltonian中,并通过波函数的动量形式投射到实验室空间。动量形式产生共轭夸克和gluon场。实验室空间中的局部规格不变性遵循配置变量的单位性和内在空间上坐标场的左不变性。未来的工作应旨在在第三代和第三代和夸克中调用瘦素。
We suggest the gauge groups SU(3), SU(2) and U(1) to share a common origin in U(3). We take the Lie group U(3) to serve as an intrinsic configuration space for baryons. A spontaneous symmetry break in the baryonic state selects a U(2) subgroup for the Higgs mechanism. The Higgs field enters the symmetry break to relate the strong and electroweak energy scales by exchange of one quantum of action between the two sectors. This shapes the Higgs potential to fourth order. Recently intrinsic quantum mechanics has given a suggestion for the Cabibbo angle from theory (EPL124-2018) and a prediction for the Higgs couplings to gauge bosons (EPL125-2019). Previously it has given the nucleon mass and the parton distribution functions for u and d quarks in the proton (EPL102-2013). It has given a quite accurate equation for the Higgs mass in closed form (IJMPA30-2015) and an N and Delta spectrum essentially without missing resonances (arXiv:1109.4732). The intrinsic space is to be distinguished from an interior space. The intrinsic space is non-spatial, i.e. no gravity in intrinsic space. The configuration variable is like a generalized spin variable excited from laboratory space by kinematic generators: momentum, spin and Laplace-Runge-Lenz operators. The baryon dynamics resides in a Hamiltonian on U(3) and projects to laboratory space by the momentum form of the wavefunction. The momentum form generates conjugate quark and gluon fields. Local gauge invariance in laboratory space follows from unitarity of the configuration variable and left invariance of the coordinate fields on the intrinsic space. Future work should aim to invoke leptons in the second and third generations and quarks in the third.