论文标题
一维Boltzmann-BGK方程的样条矩模型
Spline Moment Models for the one-dimensional Boltzmann-BGK equation
论文作者
论文摘要
我们使用分布功能的新加权样条ANSATZ为动力学方程介绍了样条矩方程(SME),并通过模拟一维Boltzmann-BGK方程来研究ANSATZ,模型及其性能。新的基础由加权约束的花纹组成,用于保留质量,动量和能量的分布函数的近似值。然后,此基础用于使用Galerkin方法来得出矩方程,以进行移动和缩放的Boltzmann-BGK方程,以便在具有自适应网格的速度空间中进行准确有效的离散化。方程式以紧凑的分析形式给出,我们表明双眼性能与众所周知的毕业矩模型相似。使用冲击管,对称的两光束测试和固定的冲击结构测试案例对模型进行数值研究。当正确选择样条基函数的参数时,所有测试都揭示了新中小企业模型的良好近似属性。新的中小企业模型优于现有的时刻模型,并导致较小的误差,同时使用少量变量进行有效的计算。
We introduce Spline Moment Equations (SME) for kinetic equations using a new weighted spline ansatz of the distribution function and investigate the ansatz, the model, and its performance by simulating the one-dimensional Boltzmann-BGK equation. The new basis is composed of weighted constrained splines for the approximation of distribution functions that preserves mass, momentum, and energy. This basis is then used to derive moment equations using a Galerkin approach for a shifted and scaled Boltzmann-BGK equation, to allow for an accurate and efficient discretization in velocity space with an adaptive grid. The equations are given in compact analytical form and we show that the hyperbolicity properties are similar to the well-known Grad moment model. The model is investigated numerically using the shock tube, the symmetric two-beam test and a stationary shock structure test case. All tests reveal the good approximation properties of the new SME model when the parameters of the spline basis functions are chosen properly. The new SME model outperforms existing moment models and results in a smaller error while using a small number of variables for efficient computations.