论文标题
具有可证明复杂性的数字场筛
Number Field Sieve with Provable Complexity
论文作者
论文摘要
在本文中,我们对Buhler,Lenstra和Pomerance使用的一般数字场筛门进行了深入的介绍,然后查看了该算法的现代发展之一:具有可证明复杂性的随机版本。该版本由Lee和Venkatesan于2017年提出,并在代数和分析数理论,GALOIS理论和概率理论的材料之前。
In this thesis we give an in-depth introduction to the General Number Field Sieve, as it was used by Buhler, Lenstra, and Pomerance, before looking at one of the modern developments of this algorithm: A randomized version with provable complexity. This version was posited in 2017 by Lee and Venkatesan and will be preceded by ample material from both algebraic and analytic number theory, Galois theory, and probability theory.