论文标题

Juno中MEV能量的粒子识别

Particle Identification at MeV Energies in JUNO

论文作者

Ludhova, Livia, Rebber, Henning, Wonsak, Björn Soenke, Xu, Yu

论文摘要

Juno是目前在中国江户目前正在建设的多功能中微子实验。这是确定中微子质量排序的主要目的。此外,它的20 \ KT目标质量使其成为研究中微子的理想检测器,包括核反应堆,地球及其大气,太阳甚至超新星。由于中微子相互作用的横截面很小,因此中微子实验的事件速率受到限制。为了最大化信噪比,控制背景水平非常重要。在本文中,我们讨论了Juno中粒子识别的潜力,其基本原理以及实验中可能的应用领域。虽然可以将提出的概念转移到任何大型液体闪烁体检测器中,但我们的方法专门针对Juno进行评估,结果主要由其高光光子产量为每MEV的沉积能量1,200个光电子电子。为了研究事件歧视的潜力,分析了几个事件配对,即$α/β$,$ p/β$,$ e^+/e^ - $和$ e^ - /γ$。我们比较了基于神经网络和拓扑事件重建的高级分析技术的歧视性能,以使标准Gatti滤波器作为参考。我们使用在物理动机的能量间隔中生成的蒙特卡洛样品。我们研究削减对能量,径向位置,PMT时间分辨率和黑暗噪声的依赖性。结果表明,使用Gatti方法和神经网络,$α/β$和$ p/β$的表现出色。此外,$ e^+/e^ - $和$ e^ - /γ$可以部分通过统计基础来区分神经网络和拓扑重建。尤其是在后一种情况下,拓扑方法被证明非常成功。

JUNO is a multi-purpose neutrino experiment currently under construction in Jiangmen, China. It is primary aiming to determine the neutrino mass ordering. Moreover, its 20\,kt target mass makes it an ideal detector to study neutrinos from various sources, including nuclear reactors, the Earth and its atmosphere, the Sun, and even supernovae. Due to the small cross section of neutrino interactions, the event rate of neutrino experiments is limited. In order to maximize the signal-to-noise ratio, it is extremely important to control the background levels. In this paper we discuss the potential of particle identification in JUNO, its underlying principles and possible areas of application in the experiment. While the presented concepts can be transferred to any large liquid scintillator detector, our methods are evaluated specifically for JUNO and the results are mainly driven by its high optical photon yield of 1,200 photo electrons per MeV of deposited energy. In order to investigate the potential of event discrimination, several event pairings are analysed, i.e. $α/β$, $p/β$, $e^+/e^-$, and $e^-/γ$. We compare the discrimination performance of advanced analytical techniques based on neural networks and on the topological event reconstruction keeping the standard Gatti filter as a reference. We use the Monte Carlo samples generated in the physically motivated energy intervals. We study the dependence of our cuts on energy, radial position, PMT time resolution, and dark noise. The results show an excellent performance for $α/β$ and $p/β$ with the Gatti method and the neural network. Furthermore, $e^+/e^-$ and $e^-/γ$ can partly be distinguished by means of neural network and topological reconstruction on a statistical basis. Especially in the latter case, the topological method proved very successful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源