论文标题
哈密顿和无别名杂交颗粒场分子动力学
Hamiltonian and Alias-Free Hybrid Particle-Field Molecular Dynamics
论文作者
论文摘要
混合粒子场分子动力学将标准分子电位与密度场模型结合在一起,成为一种计算有效的方法,该方法适应了中尺度软件系统的研究。在这里,我们介绍了一种基于过滤密度和粒子网格形式主义的新配方,该制剂允许哈密顿动力学和无别名的力量计算。这是通过引入粒子场相互作用的长度尺度来实现的,而与用于表示密度场的数值网格无关,从而使力在栅格细化时实现了力的系统收敛。我们的方案概括了文献中提出的原始粒子场分子动力学实现,发现它们是极限条件。通过考虑标准杂交颗粒势描述的简单单原子系统,可以基准这种新配方的准确性。我们发现,通过控制时间步长和网格大小,能量和动量的保护以及别名的消失。增加粒子场相互作用长度尺度允许使用更大的时间步骤和更粗的网格。这促进了在准内坦的近似上使用多个时间步长策略,发现不能很好地节省能量和动量。最后,我们对简单单原子系统的结构和动态特性的研究表明,当前配方与高斯核心模型之间的行为一致。
Hybrid particle-field molecular dynamics combines standard molecular potentials with density-field models into a computationally efficient methodology that is well-adapted for the study of mesoscale soft matter systems. Here, we introduce a new formulation based on filtered densities and a particle-mesh formalism that allows for Hamiltonian dynamics and alias-free force computation. This is achieved by introducing a length scale for the particle-field interactions independent of the numerical grid used to represent the density fields, enabling systematic convergence of the forces upon grid refinement. Our scheme generalises the original particle-field molecular dynamics implementations presented in the literature, finding them as limit conditions. The accuracy of this new formulation is benchmarked by considering simple monoatomic systems described by the standard hybrid particle-field potentials. We find that by controlling the time step and grid size, conservation of energy and momenta, as well as disappearance of alias, is obtained. Increasing the particle-field interaction length scale permits the use of larger time steps and coarser grids. This promotes the use of multiple time step strategies over the quasi-instantaneous approximation, which is found to not conserve energy and momenta equally well. Finally, our investigations of the structural and dynamic properties of simple monoatomic systems show a consistent behavior between the present formulation and Gaussian Core models.