论文标题
低功率对象用分层神经网络计数
Low-Power Object Counting with Hierarchical Neural Networks
论文作者
论文摘要
深度神经网络(DNN)可以在许多计算机视觉任务(例如对象计数)中实现最新的准确性。对象计数采用两个输入:图像和一个对象查询,并报告查询对象的出现数量。为了实现此类任务的高精度,DNN需要数十亿个操作,这使得它们难以在资源受限的低功耗设备上部署。先前的工作表明,大量的DNN操作是多余的,可以消除而不会影响准确性。为了减少这些冗余,我们提出了用于对象计数的层次DNN体系结构。该体系结构使用区域建议网络(RPN)提出可能包含查询对象的利益区域(ROI)。然后,分层分类器有效地找到了实际包含查询对象的ROI。层次结构包含视觉上相似对象类别的组。在层次结构的每个节点上使用小的DNN来分类这些组之间。 ROI由分层分类器逐步处理。如果ROI中的对象与查询对象在同一组中,则层次结构中的下一个DNN进一步处理ROI;否则,ROI将被丢弃。通过使用一些小型DNN来处理每个图像,此方法与现有对象计数器相比,减少了内存需求,推理时间,能量消耗以及具有可忽略的精度损失的操作数量。
Deep Neural Networks (DNNs) can achieve state-of-the-art accuracy in many computer vision tasks, such as object counting. Object counting takes two inputs: an image and an object query and reports the number of occurrences of the queried object. To achieve high accuracy on such tasks, DNNs require billions of operations, making them difficult to deploy on resource-constrained, low-power devices. Prior work shows that a significant number of DNN operations are redundant and can be eliminated without affecting the accuracy. To reduce these redundancies, we propose a hierarchical DNN architecture for object counting. This architecture uses a Region Proposal Network (RPN) to propose regions-of-interest (RoIs) that may contain the queried objects. A hierarchical classifier then efficiently finds the RoIs that actually contain the queried objects. The hierarchy contains groups of visually similar object categories. Small DNNs are used at each node of the hierarchy to classify between these groups. The RoIs are incrementally processed by the hierarchical classifier. If the object in an RoI is in the same group as the queried object, then the next DNN in the hierarchy processes the RoI further; otherwise, the RoI is discarded. By using a few small DNNs to process each image, this method reduces the memory requirement, inference time, energy consumption, and number of operations with negligible accuracy loss when compared with the existing object counters.