论文标题

具有较大序列的自动形态群的代数曲线

Algebraic curves with automorphism groups of large prime order

论文作者

Arakelian, Nazar, Speziali, Pietro

论文摘要

令$ \ mathcal {x} $为在代数封闭的特征性特征$ p \ geq 0 $的代数$ g $属的代数曲线和$ q $ a prime divinding $ | \ mbox {aut}(aut}(aut}(\ mathcal {x}}))| $ $。我们说$ \ Mathcal {x} $是$ q $ -curve。 Homma证明了$ Q \ leq G+1 $或$ Q = 2G+1 $,然后分类$(2G+1)$ - 曲线。在本说明中,我们对$(g+1)$ - 曲线进行了分类,并完全表征$ q $ curves $ q = 2g+1,g+1 $的自动形态组。我们还以$ q = g,g-1 $的$ q $ curves给出了一些部分结果。

Let $\mathcal{X}$ be an algebraic curve of genus $g$ defined over an algebraically closed field $K$ of characteristic $p \geq 0$, and $q$ a prime dividing $|\mbox{Aut}(\mathcal{X})|$. We say that $\mathcal{X}$ is a $q$-curve. Homma proved that either $q \leq g+1$ or $q = 2g+1$, and classified $(2g+1)$-curves. In this note, we classify $(g+1)$-curves, and fully characterize the automorphism groups of $q$-curves for $q= 2g+1, g+1$. We also give some partial results on $q$-curves for $q = g, g-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源