论文标题
合成黑洞图像的特征提取
Feature Extraction on Synthetic Black Hole Images
论文作者
论文摘要
事件地平线望远镜(EHT)最近发布了M87中黑洞的第一台地平线图像。这些图像与其他天文学数据结合在一起,限制了孔的质量和自旋,并限制了孔上的吸积率和磁通量。 EHT的一个重要问题是,仅从当前和将来的EHT数据中提取诸如自旋和磁通量之类的关键参数。在这里,我们使用在最新模拟中绘制的高分辨率合成图像训练的神经网络探索参数提取。我们发现神经网络能够以高精度恢复自旋和通量。我们对解释神经网络输出的解释特别感兴趣,并了解哪些功能用于识别黑洞旋转。使用特征地图,我们发现尤其是低表面亮度特征的网络键。
The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for EHT is how well key parameters such as spin and trapped magnetic flux can be extracted from present and future EHT data alone. Here we explore parameter extraction using a neural network trained on high resolution synthetic images drawn from state-of-the-art simulations. We find that the neural network is able to recover spin and flux with high accuracy. We are particularly interested in interpreting the neural network output and understanding which features are used to identify, e.g., black hole spin. Using feature maps, we find that the network keys on low surface brightness features in particular.