论文标题

将年龄和延迟纳入生物物理系统的模型

Incorporating age and delay into models for biophysical systems

论文作者

KhudaBukhsh, Wasiur R., Kang, Hye-Won, Kenah, Eben, Rempala, Grzegorz A.

论文摘要

在许多生物系统中,假定物理状态的化学反应或变化是瞬时发生的。为了描述这些系统的动力学,已广泛使用了需要指数分布的事件间时间的Markov模型。但是,已知一些生物物理过程(例如基因转录和翻译)在开始和完成过程之间存在显着差距,这使得通常无法指数分布无法实现。在本文中,我们考虑通过将依赖年龄的随机时间延迟纳入系统动力学来放松这一假设。我们通过在更抽象的状态空间上构建标准值的马尔可夫过程来做到这一点,这使我们能够跟踪参与化学反应的分子的“年龄”。 我们研究此类年龄结构化系统的大批量极限。我们表明,如果适当地缩放,随机系统可以通过大容量极限的部分微分方程(PDE)系统近似,而不是经典理论中的普通微分方程(ODE)。我们展示了如何将限制PDE系统用于进一步减少模型的目的和设计有效的仿真算法。为了描述这些想法,我们将简单的转录过程作为运行示例。但是,我们注意到本文开发的方法适用于广泛的生物物理系统。

In many biological systems, chemical reactions or changes in a physical state are assumed to occur instantaneously. For describing the dynamics of those systems, Markov models that require exponentially distributed inter-event times have been used widely. However, some biophysical processes such as gene transcription and translation are known to have a significant gap between the initiation and the completion of the processes, which renders the usual assumption of exponential distribution untenable. In this paper, we consider relaxing this assumption by incorporating age-dependent random time delays into the system dynamics. We do so by constructing a measure-valued Markov process on a more abstract state space, which allows us to keep track of the "ages" of molecules participating in a chemical reaction. We study the large-volume limit of such age-structured systems. We show that, when appropriately scaled, the stochastic system can be approximated by a system of Partial Differential Equations (PDEs) in the large-volume limit, as opposed to Ordinary Differential Equations (ODEs) in the classical theory. We show how the limiting PDE system can be used for the purpose of further model reductions and for devising efficient simulation algorithms. In order to describe the ideas, we use a simple transcription process as a running example. We, however, note that the methods developed in this paper apply to a wide class of biophysical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源