论文标题
基于多变量复合物下部分布
Joint-Diagonalizability-Constrained Multichannel Nonnegative Matrix Factorization Based on Multivariate Complex Sub-Gaussian Distribution
论文作者
论文摘要
在本文中,我们讨论了用于盲源分离的多通道非负矩阵分解(MNMF)的统计模型扩展,我们提出了一种新的参数更新算法,该算法使用了次高斯模型中的新参数更新算法。 MNMF采用了全级空间协方差矩阵,可以模拟混响强大的情况,并且来源不是点源。在常规的MNMF中,假定观察到的信号的频谱图遵循多元高斯分布。在本文中,首先是为了扩展MNMF模型,我们将多元广义高斯分布作为多变量下高斯分布。由于MNMF基于此多变量亚高斯模型的成本函数很难最小化,因此,我们还向MNMF引入了与FastMNMF相似的空间协方差矩阵中的联合二元分解性约束,并将成本函数转换为我们可以将其应用于有效函数的形式的成本功能来实现有效的参数更新。最后,从盲源分离实验中,我们表明,所提出的方法在源分离精度中优于常规方法。
In this paper, we address a statistical model extension of multichannel nonnegative matrix factorization (MNMF) for blind source separation, and we propose a new parameter update algorithm used in the sub-Gaussian model. MNMF employs full-rank spatial covariance matrices and can simulate situations in which the reverberation is strong and the sources are not point sources. In conventional MNMF, spectrograms of observed signals are assumed to follow a multivariate Gaussian distribution. In this paper, first, to extend the MNMF model, we introduce the multivariate generalized Gaussian distribution as the multivariate sub-Gaussian distribution. Since the cost function of MNMF based on this multivariate sub-Gaussian model is difficult to minimize, we additionally introduce the joint-diagonalizability constraint in spatial covariance matrices to MNMF similarly to FastMNMF, and transform the cost function to the form to which we can apply the auxiliary functions to derive the valid parameter update rules. Finally, from blind source separation experiments, we show that the proposed method outperforms the conventional methods in source-separation accuracy.