论文标题

在一维ISING模型中查找和分类一个无限数量的边际转变病例

Finding and classifying an infinite number of cases of the marginal phase transition in one-dimensional Ising models

论文作者

Yin, Weiguo

论文摘要

一维系统 - 从行进光线到电路电缆以及从DNA到超弦的范围 - 对于人类的宇宙知识而言,无处不在且至关重要。但是,我们与一维系统在自发期过渡的研究和教育中的互动,其中材料可以单独进行不同阶段(例如气体,液体,固体等)之间在不同阶段(例如气体,液体,固体等)之间迅速变化的现象,并未在很大程度上进行,因为它证明了一个维度的系统不包含对培养书的相对量的量子,几乎不包含型号的量化,而不是100年的模型。 50年前[2]。最近,在包含强烈几何挫败感的一维ising模型中发现了自发的边缘相变(MPT)[3]。在这里,通过探索MPT基础的新数学结构的对称性,我报告了无限数量的MPT案例的发现和分类 - 具有高度可调的有趣行为,例如相位重新进入,过渡温度的圆顶形状,配对和衡量自由。这些发现揭示了构建基于MPT的一维iSing机器的可能性,该机器可用于模拟强相关系统中相竞争的复杂现象,并通过其明确的精确解决方案提供见解。它们还形成了一个丰富的操场,用于探索一维的海森伯格模型中非常规相变。

One-dimensional systems---ranging from travelling light to circuit cables and from DNA to superstrings---are ubiquitous and critically important to the human knowledge of the universe. However, our engagement with one-dimensional systems in the research and education of spontaneous phase transitions, the phenomena wherein materials can change rapidly between different phases (e.g., gas, liquid, solid, etc.) on their own, has not been largely exercised, since it was proven that one-dimensional systems do not contain phase transitions in the textbook Ising model almost 100 years ago [1] and its quantum counterpart, the Heisenberg model, over 50 years ago [2]. Recently, a spontaneous marginal phase transition (MPT) was discovered in a one-dimensional Ising model containing strong geometrical frustration [3]. Here, by exploring the symmetry of the new mathematical structure underlying the MPT, I report the finding and classification of an infinite number of MPT cases---with highly tunable intriguing behaviors like phase reentrance, the dome shape of transition temperature, pairing, and gauge freedom. These discoveries reveal the possibility of building the MPT-based one-dimensional Ising Machine that can be used to simulate the complex phenomena of phase competition in strongly correlated systems and provide insights with its unambiguous exact solutions. They also form a rich playground for exploring unconventional phase transitions in one-dimensional Heisenberg models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源