论文标题
在线性制度中重新访问Vaidya-Tikekar恒星模型
Revisiting Vaidya-Tikekar stellar model in the linear regime
论文作者
论文摘要
我们通过在线性制度中重新访问Vaidya-Tikekar恒星模型来获得新的解决方案。利用Vaidya和Tikekar Metric Ansatz [J.天体。 astron。 {\ bf3}(1982)325]描述了由各向异性物质分布组成的静态球形对称相对论星的时空,我们可以求解线性EOS,我们解决了爱因斯坦磁场方程,并随后分析了解决方案的物理能力。我们探测了Vaidya-Tikekar模型的曲率参数$ K $的影响,该模型的特征是与均相球形分布的背离对恒星的Mass-Radius关系。在密度依赖性的MIT袋模型的背景下,我们显示了曲率参数,一些众所周知的脉冲星的总质量和总质量和半径,即1820-30,RX J1856-37,SAXJ 1808.4和她的X-1。我们探讨了基于当前观察数据来微调这些参数的可能性。
We obtain a new class of solutions by revisiting the Vaidya-Tikekar stellar model in the linear regime. Making use of the Vaidya and Tikekar metric ansatz [J. Astrophys. Astron. {\bf3} (1982) 325] describing the spacetime of static spherically symmetric relativistic star composed of an anisotropic matter distribution admitting a linear EOS, we solve the Einstein field equations and subsequently analyze physical viability of the solution. We probe the impact of the curvature parameter $K$ of the Vaidya-Tikekar model, which characterizes a departure from homogeneous spherical distribution, on the mass-radius relationship of the star. In the context of density-dependent MIT Bag models, we show a correlation between the curvature parameter, the bag constant and total mass and radius of some of the well-known pulsars viz., 4U 1820-30, RX J1856-37, SAXJ 1808.4 and Her X-1. We explore the possibility of fine-tuning these parameters based on current observational data.