论文标题

Loop-Tree二元性中多环Feynman集成的因果表示

Causal representation of multi-loop Feynman integrands within the loop-tree duality

论文作者

Aguilera-Verdugo, J. Jesus, Hernandez-Pinto, Roger J., Rodrigo, German, Sborlini, German F. R., Bobadilla, William J. Torres

论文摘要

Feynman代表中多环散射幅度的数值评估通常需要处理物理(因果)和非物理(非因果)奇点。 Loop-Tree二元性(LTD)提供了一个强大的框架,可轻松表征和区分这两种类型的奇点,然后在分析上简化底层表达式。在本文中,我们明确地在三个父拓扑产生的多环feynman积分的双重表示上进行了明确的工作,我们称它们为最大,近代到最大的,近代到隔壁到最大的循环拓扑。特别是,我们仅在因果传播剂方面与循环和内部配置的数量无关表达这些双重贡献。因此,为所有订单提供非常紧凑和因果的积分表示。为此,我们通过有限领域的数值评估重建了它们的分析表达式。该程序隐含地消除了所有非物理奇异性。我们还根据纠缠的因果阈值来解释结果。鉴于双重表达式的简单结构,我们利用它们在整数的行为上的平稳行为在整数时空维度中最多将四个循环整合在一起。

The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops and internal configurations, in terms of causal propagators only. Thus, providing very compact and causal integrand representations to all orders. In order to do so, we reconstruct their analytic expressions from numerical evaluation over finite fields. This procedure implicitly cancels out all unphysical singularities. We also interpret the result in terms of entangled causal thresholds. In view of the simple structure of the dual expressions, we integrate them numerically up to four loops in integer space-time dimensions, taking advantage of their smooth behaviour at integrand level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源