论文标题

分层剪切流中的政权转变:水平和倾斜导管之间的联系

Regime transitions in stratified shear flows: the link between horizontal and inclined ducts

论文作者

Duran-Matute, Matias, Kaptein, Steven J., Clercx, Herman J. H.

论文摘要

我们提出了在层状分层倾斜导管(SID)流中的二维速度和密度场的分析解决方案,在层次分层的倾斜导管(SID)流中,沿沿通道动量方程中的扩散占主导地位,但在密度传输方程中的惯性占主导地位。我们将这种近似值称为动量中的静液压/引力/粘性,并且由于管理方程中的领先余额而导致的密度(HGV-A)近似值。分析解对长管极限的两层配置中的层流有效。在这种情况下,非二维音量通量由Froude编号$ fr^* = re_g/(a \,k)$,带有$ re_g $的引力雷诺数,$ a $ a $ a $ a $ a $ a $ k $ k $ a $ k $ a a demetralictal参数取决于该导管和分析的倾斜度。 HGV-A近似中的分析解决方案通过实验室实验的结果进行了验证,并使我们能够对SID流的动力学和特性获得新的见解。最重要的是,$ fr^*$的恒定值描述了在水平和倾斜导管中,均匀湍流的流动状态之间的过渡:从层流流到界面波,再到间歇性的湍流和持续的湍流。

We present the analytical solution for the two-dimensional velocity and density fields within an approximation for laminar stratified inclined duct (SID) flows where diffusion dominates over inertia in the along-channel momentum equation but it is negligible in the density transport equation. We refer to this approximation as the hydrostatic/gravitational/viscous in momentum and advective in density (HGV-A) approximation due to the leading balances in the governing equations. The analytical solution is valid for laminar flows in a two-layer configuration in the limit of long ducts. Under such conditions, the non-dimensional volume flux is given by the Froude number $Fr^* =Re_g/(A\,K)$ with $Re_g$ the gravitational Reynolds number, $A$ the aspect ratio of the duct, and $K$ a geometrical parameter that depends on the tilt of the duct and is obtained from the analytical solution. The analytical solution in the HGV-A approximation is validated against results from laboratory experiments, and allows us to gain new insight into the dynamics and properties of SID flows. Most importantly, constant values of $Fr^*$ describe, in both horizontal and inclined ducts, the transitions between increasingly turbulent flow regimes: from laminar flow, to interfacial waves, to intermittent turbulence and sustained turbulence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源