论文标题

在投影横向场ISING模型中的纠缠过渡

Entanglement Transition in the Projective Transverse Field Ising Model

论文作者

Lang, Nicolai, Büchler, Hans Peter

论文摘要

在随机统一门和投影测量结果下,系统的离散量子轨迹已显示出在纠缠缩放中的特征过渡,而密度矩阵中未编码。在本文中,我们研究了一个投影性横向场Ising模型,这是一个随机模型,具有两个非公认的投影测量,没有统一动力学。我们从数字上表明,他们的竞争推动了两个均表现出区域法纠缠的两个不同稳态之间的纠缠过渡,并引入了一个经典但非本地模型,该模型完全捕获了纠缠动态。我们认为,利用地图以键合渗透,我们认为一个维度中的临界系统由共形场理论描述,并得出了纠缠熵的通用缩放和临界指数,以缩放两个旋转的相互信息。在量子误差校正的背景下,我们以对纠缠过渡的解释结束。

Discrete quantum trajectories of systems under random unitary gates and projective measurements have been shown to feature transitions in the entanglement scaling that are not encoded in the density matrix. In this paper, we study the projective transverse field Ising model, a stochastic model with two noncommuting projective measurements and no unitary dynamics. We numerically demonstrate that their competition drives an entanglement transition between two distinct steady states that both exhibit area law entanglement, and introduce a classical but nonlocal model that captures the entanglement dynamics completely. Exploiting a map to bond percolation, we argue that the critical system in one dimension is described by a conformal field theory, and derive the universal scaling of the entanglement entropy and the critical exponent for the scaling of the mutual information of two spins exactly. We conclude with an interpretation of the entanglement transition in the context of quantum error correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源