论文标题
无线网络中的节点饥饿问题的基于公平的半偶然遗传算法的渠道分配技术
Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel Assignment Technique for Nodes Starvation Problem in Wireless Mesh Network
论文作者
论文摘要
多拉迪奥多通道无线网络网络(WMN)已成为可扩展,可靠和敏捷的无线网络,该网络支持许多类型的创新技术,例如物联网(IoT)和车辆网络。由于正交通道的数量有限,通道之间的干扰会对网格客户端的带宽公平分布产生不利影响,从而导致节点饥饿在不足的带宽方面,这阻碍了WMN作为有效访问技术的采用。因此,公平的渠道分配对于网格客户端使用可用资源至关重要。但是,在现有研究中,由于不公平的渠道分布引起的节点饥饿问题已被广泛忽视。取而代之的是,现有的通道分配算法要么减少整个网络干扰或最大化总网络吞吐量,因此既不能保证通道的公平分布也不消除节点饥饿。为此,在本文中提出了基于公平的半偶然遗传算法的通道分配技术(FA-SCGA-CAA),以解决无线网络网络中的节点饥饿问题。 FA-SCGA-CAA使用遗传算法(GA)的修改版本基于多标准来优化公平性。修改包括提出一种半偶然技术,用于创建具有强大基因的主要染色体。这样的染色体用于创建一个强大的人群,以有效而有效的方式将搜索引导到全球最小值。结果是一种非线性公平的适应性功能,旨在最大程度地提高链接公平,同时最大程度地减少链接干扰。与相关工作的比较表明,拟议的FA_SCGA_CAA将潜在的节点饥饿降低了22%,并改善了网络容量利用率23%。
Multi-Radio Multi-Channel Wireless Mesh Networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of innovative technologies such as the Internet of Things (IoT) and vehicular networks. Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth, which impedes the adoption of WMN as an efficient access technology. Therefore, a fair channel assignment is crucial for the mesh clients to utilize the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked during channel assignment by the extant research. Instead, existing channel assignment algorithms either reduce the total network interference or maximize the total network throughput, which neither guarantees a fair distribution of the channels nor eliminates node starvation. To this end, the Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel Assignment Technique (FA-SCGA-CAA) was proposed in this paper for Nodes Starvation Problem in Wireless Mesh Networks. FA-SCGA-CAA optimizes fairness based on multiple-criterion using a modified version of the Genetic Algorithm (GA). The modification includes proposing a semi-chaotic technique for creating the primary chromosome with powerful genes. Such a chromosome was used to create a strong population that directs the search towards the global minima in an effective and efficient way. The outcome is a nonlinear fairness oriented fitness function that aims at maximizing the link fairness while minimizing the link interference. Comparison with related work shows that the proposed FA_SCGA_CAA reduced the potential nodes starvation by 22% and improved network capacity utilization by 23%.