论文标题
进行流程:神经ode的自适应控制
Go with the Flow: Adaptive Control for Neural ODEs
论文作者
论文摘要
尽管具有优雅的配方和轻巧的记忆成本,但神经普通微分方程(节点)仍遭受已知的代表性限制。特别是,节点学到的单流量不能表达从给定的数据空间到自身的所有同构形态,而它们的静态权重参数化限制了与具有层相关权重的离散体系结构相比,它们可以学习的函数类型。在这里,我们描述了一个新的模块,称为神经控制的ODE(N代码),旨在提高节点的表现性。 N代码模块的参数是由最初或电流激活状态的可训练的映射控制的动态变量,分别产生了开环和闭环控制的形式。单个模块足以在适应性地驱动神经表示的非自主流上学习分布。我们提供了理论和经验证据,表明N代码规避先前节点模型的局限性,并显示出增加模型表达性如何在几种受监督和无监督的学习问题中表现出来。这些有利的经验结果表明,在跨众多领域的神经网络中使用数据和活动依赖性可塑性的潜力。
Despite their elegant formulation and lightweight memory cost, neural ordinary differential equations (NODEs) suffer from known representational limitations. In particular, the single flow learned by NODEs cannot express all homeomorphisms from a given data space to itself, and their static weight parameterization restricts the type of functions they can learn compared to discrete architectures with layer-dependent weights. Here, we describe a new module called neurally controlled ODE (N-CODE) designed to improve the expressivity of NODEs. The parameters of N-CODE modules are dynamic variables governed by a trainable map from initial or current activation state, resulting in forms of open-loop and closed-loop control, respectively. A single module is sufficient for learning a distribution on non-autonomous flows that adaptively drive neural representations. We provide theoretical and empirical evidence that N-CODE circumvents limitations of previous NODEs models and show how increased model expressivity manifests in several supervised and unsupervised learning problems. These favorable empirical results indicate the potential of using data- and activity-dependent plasticity in neural networks across numerous domains.