论文标题
晶格对称性和抗铁磁量子大厅的出现
Lattice symmetry and emergence of antiferromagnetic quantum Hall states
论文作者
论文摘要
在具有非平凡拓扑带的系统中,强烈的局部相互作用可以稳定量子状态,例如磁性拓扑绝缘子。我们研究了晶格对称性对抗铁磁量子霍尔状态的可能出现的影响。我们考虑了下一个最邻居(nnn)跳跃扩展的稀疏的Harper-Hofstadter模型,该模型在半填充时张开缝隙,并允许实现量子厅绝缘子。量子厅绝缘子具有Chern号$ \ MATHCAL {C} = 2 $,因为两个旋转组件都处于同一量子厅状态。我们沿$ \ hat {x} $添加了交错的潜在$δ$ - 有利于普通绝缘子的方向,而哈伯德交互$ u $偏爱mott绝缘子。 Mott绝缘子是用于小型NNN跳的条纹抗铁磁铁的NéelAntiferromagnet。我们研究了小型和大型NNN Hoppings模型的$ U $ - $δ$相图。我们表明,尽管对于大型NNN跳跃而存在$ \ MATHCAL {C} = 1 $条纹抗铁磁量量子厅绝缘子在相图中,但在小型NNN的小型NNN Hopping的$ \ Mathcal {C} = 1 $ \ Mathcal {C} = 1 $néel抗fiferromagnetic Hall sistulator。我们讨论一个$ \ MATHCAL {C} = 1 $抗铁磁量子霍尔绝缘子只有在无法通过空间组的操作来补偿自旋转换的效果时才能出现。我们的发现可以用作未来调查的指南,以寻找抗磁磁量子厅的状态。
Strong local interaction in systems with non-trivial topological bands can stabilize quantum states such as magnetic topological insulators. We investigate the influence of the lattice symmetry on the possible emergence of antiferromagnetic quantum Hall states. We consider the spinful Harper-Hofstadter model extended by a next-nearest-neighbor (NNN) hopping which opens a gap at half-filling and allows for the realization of a quantum Hall insulator. The quantum Hall insulator has the Chern number $\mathcal{C}=2$ as both spin components are in the same quantum Hall state. We add to the system a staggered potential $Δ$ along the $\hat{x}$-direction favoring a normal insulator and the Hubbard interaction $U$ favoring a Mott insulator. The Mott insulator is a Néel antiferromagnet for small and a stripe antiferromagnet for large NNN hopping. We investigate the $U$-$Δ$ phase diagram of the model for both small and large NNN hoppings. We show that while for large NNN hopping there exists a $\mathcal{C}=1$ stripe antiferromagnetic quantum Hall insulator in the phase diagram, there is no equivalent $\mathcal{C}=1$ Néel antiferromagnetic quantum Hall insulator at the small NNN hopping. We discuss that a $\mathcal{C}=1$ antiferromagnetic quantum Hall insulator can emerge only if the effect of the spin-flip transformation cannot be compensated by a space group operation. Our findings can be used as a guideline in future investigations searching for antiferromagnetic quantum Hall states.