论文标题

生成对抗网络的堡垒度量

The Bures Metric for Generative Adversarial Networks

论文作者

De Meulemeester, Hannes, Schreurs, Joachim, Fanuel, Michaël, De Moor, Bart, Suykens, Johan A. K.

论文摘要

生成对抗网络(GAN)是产生高质量样本的性能生成方法。但是,在某些情况下,gan的训练可以导致模式崩溃或掉落模式,即生成模型无法从整个概率分布中采样。为了解决这个问题,我们将鉴别器的最后一层用作特征图来研究真实数据和伪数据的分布。在培训期间,我们建议通过使用特征空间中的协方差矩阵之间的Bures距离将真实的批次多样性与假批次多样性相匹配。分别在协方差和内核矩阵方面可以方便地在特征空间或内核空间中方便地进行计算。我们观察到匹配的多样性大大降低了模式的崩溃,并对样品质量产生积极影响。在实用方面,在几个数据集上提出并评估了一个非常简单的训练程序,不需要其他超参数调整。

Generative Adversarial Networks (GANs) are performant generative methods yielding high-quality samples. However, under certain circumstances, the training of GANs can lead to mode collapse or mode dropping, i.e. the generative models not being able to sample from the entire probability distribution. To address this problem, we use the last layer of the discriminator as a feature map to study the distribution of the real and the fake data. During training, we propose to match the real batch diversity to the fake batch diversity by using the Bures distance between covariance matrices in feature space. The computation of the Bures distance can be conveniently done in either feature space or kernel space in terms of the covariance and kernel matrix respectively. We observe that diversity matching reduces mode collapse substantially and has a positive effect on the sample quality. On the practical side, a very simple training procedure, that does not require additional hyperparameter tuning, is proposed and assessed on several datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源