论文标题
费米诱导的动力临界点
Fermion-induced Dynamical Critical Point
论文作者
论文摘要
动力相变(DPT)表征了非平衡量子多体系统中动力学特性的突然变化。已经证明,除了传统的阶参数场外,额外的量子波动模式可以大大改变平衡相变的性质。但是,很少探索DPT中的对应现象。在这里,我们在突然淬火后研究了狄拉克系统中的DPT,并发现费米亚的波动可以将推定的一阶DPT绕到动力学临界点中,该临界点被称为Fermion诱导的动力学临界点(FIDCP)。这也是一个非热临界点,尽管系统经过热化后的一阶转变,但在这种临界点中仍会出现通用短期缩放行为。在FIDCP的新颖情况下,Quantum Yukawa耦合$ g_q $对于诱导FIDCP是必不可少的,尽管在红外规模上无关紧要。我们将这些变量称为{\ IT无关的缩放变量}。此外,通过调整这种必不可少的不相关缩放变量来发现将一阶DPT和FIDCP分开的动力学三级点。我们进一步提到可能的实验实现。
Dynamical phase transition (DPT) characterizes the abrupt change of dynamical properties in nonequilibrium quantum many-body systems. It has been demonstrated that extra quantum fluctuating modes besides the conventional order parameter field can drastically change the properties of equilibrium phase transitions. However, the counterpart phenomena in DPTs have rarely been explored. Here, we study the DPT in the Dirac system after a sudden quench, and find that the fermion fluctuations can round a putative first-order DPT into a dynamical critical point, which is referred to as a fermion-induced dynamical critical point (FIDCP). It is also a nonthermal critical point, in which the universal short-time scaling behavior emerges despite the system goes through a first-order transition after thermalization. In the novel scenario of FIDCP, the quantum Yukawa coupling $g_q$ is indispensable for inducing the FIDCP albeit irrelevant in the infrared scale. We call these variables {\it indispensable irrelevant scaling variables}. Moreover, a dynamical tricritical point which separates the first-order DPT and the FIDCP is discovered by tuning this indispensable irrelevant scaling variable. We further mention possible experimental realizations.