论文标题

自动语音识别的端到端代码切换语言模型

End-to-End Code Switching Language Models for Automatic Speech Recognition

论文作者

R., Ahan M., Kulkarni, Shreyas Sunil

论文摘要

在本文中,我们特别研究了代码开关文本,这是全球双语社区中最常见的事件之一。由于从自动语音识别(ASR)模块中提取了代码切换文本的差异,从而从代码切换的文本中提取单语文本,我们提出了一种方法,提出了一种方法,用于使用深层双向语言(LM)提取单语文本(LM)(LM)(例如Bert和其他机器翻译模型),并探索型号的模型,以及探索不同的型号。我们还通过将困惑和其他不同指标(如WER)与标准双语文本输出进行比较,解释了模型的鲁棒性。

In this paper, we particularly work on the code-switched text, one of the most common occurrences in the bilingual communities across the world. Due to the discrepancies in the extraction of code-switched text from an Automated Speech Recognition(ASR) module, and thereby extracting the monolingual text from the code-switched text, we propose an approach for extracting monolingual text using Deep Bi-directional Language Models(LM) such as BERT and other Machine Translation models, and also explore different ways of extracting code-switched text from the ASR model. We also explain the robustness of the model by comparing the results of Perplexity and other different metrics like WER, to the standard bi-lingual text output without any external information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源