论文标题
Coxeter类型的基本基因座,任意旁班级
Basic loci of Coxeter type with arbitrary parahoric level
论文作者
论文摘要
在减少Shimura品种中基本基因座的几何形状的渴望中,我们研究了它们的“群体理论模型” - 广义仿射deligne-lusztig品种 - 如果它们具有特别好的描述。继续[GH]和[GHN]的工作,我们挑出了Coxeter类型的类别类别,从维度角度进行表征,并获得完整的分类。我们还从Shimura品种/Rapoport-Zink空间的角度讨论已知的新案例和开放式案例。
Motivated by the desire to understand the geometry of the basic loci in the reduction of Shimura varieties, we study their "group-theoretic models" -- generalized affine Deligne-Lusztig varieties -- in cases where they have a particularly nice description. Continuing the work of [GH] and [GHN] we single out the class of cases of Coxeter type, give a characterization in terms of the dimension, and obtain a complete classification. We also discuss known, new and open cases from the point of view of Shimura varieties/Rapoport-Zink spaces.