论文标题

学习平稳而公平的表示

Learning Smooth and Fair Representations

论文作者

Gitiaux, Xavier, Rangwala, Huzefa

论文摘要

拥有数据的组织面临对受保护人群群体的歧视使用的法律责任,扩展到涉及第三方访问和使用数据的合同交易。这是有问题的,因为原始数据所有者无法将下游用户预测其未来的所有用途。本文探讨了通过将功能映射到公平表示空间的上游删除功能和敏感属性之间的相关性的能力。我们的主要结果表明,当且仅当特征和表示之间的卡方相互信息是有限的时,就可以从有限样本中认证通过表示分布的人口统计学衡量所衡量的公平性。从经验上讲,我们发现平滑表示分配提供了公平证书的概括保证,这改善了现有的公平代表学习方法。此外,我们没有观察到平滑表示分布与公平表示学习中最新方法相比,下游任务的准确性会降低下游任务的准确性。

Organizations that own data face increasing legal liability for its discriminatory use against protected demographic groups, extending to contractual transactions involving third parties access and use of the data. This is problematic, since the original data owner cannot ex-ante anticipate all its future uses by downstream users. This paper explores the upstream ability to preemptively remove the correlations between features and sensitive attributes by mapping features to a fair representation space. Our main result shows that the fairness measured by the demographic parity of the representation distribution can be certified from a finite sample if and only if the chi-squared mutual information between features and representations is finite. Empirically, we find that smoothing the representation distribution provides generalization guarantees of fairness certificates, which improves upon existing fair representation learning approaches. Moreover, we do not observe that smoothing the representation distribution degrades the accuracy of downstream tasks compared to state-of-the-art methods in fair representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源