论文标题
最小的不变区域和最小的全球吸引区域的复合物包含区域
Minimal invariant regions and minimal globally attracting regions for toric differential inclusions
论文作者
论文摘要
在全球吸引子猜想的背景下,曲折的差异夹杂物作为关键动力系统出现。我们介绍了最小不变区域的概念,以及最小的全球吸引区域的曲折差异区域。我们描述了一种方法,用于明确构建最小的不变和最小的全球吸引区域,以吸引二维复曲面差异夹杂物。特别是,我们为二维弱可逆或内部动力学系统(即使它们具有时间依赖性参数)获得不变区域和全球吸引区域。
Toric differential inclusions occur as key dynamical systems in the context of the Global Attractor Conjecture. We introduce the notions of minimal invariant regions and minimal globally attracting regions for toric differential inclusions. We describe a procedure for constructing explicitly the minimal invariant and minimal globally attracting regions for two-dimensional toric differential inclusions. In particular, we obtain invariant regions and globally attracting regions for two-dimensional weakly reversible or endotactic dynamical systems (even if they have time-dependent parameters).