论文标题

通过联合学习的域适应性,用于通用,光学汽车零件识别和检测系统(Go-卡)

Domain Adaptation with Joint Learning for Generic, Optical Car Part Recognition and Detection Systems (Go-CaRD)

论文作者

Stappen, Lukas, Du, Xinchen, Karas, Vincent, Müller, Stefan, Schuller, Björn W.

论文摘要

自动识别和检测汽车零件的系统在智能车辆发展的几个新兴研究领域至关重要。他们可以使人与车辆之间的相互作用进行检测和建模。在本文中,我们对深度学习体系结构在三个新型数据集上的29个内部和外部车辆区域的分类和定位进行定量和定性探索。此外,我们尝试了跨数据集的联合和转移学习方法,并指出系统的潜在应用。我们最佳的网络体系结构的识别率达到93.67%,而我们使用最先进的骨干网络的最佳本地化方法获得了63.01%的地图以进行检测。 Muse-Car-Part数据集基于视频中各种各样的人类互动,最佳模型的权重以及该代码公开可供学术方公开使用,以进行基准测试和未来的研究。

Systems for the automatic recognition and detection of automotive parts are crucial in several emerging research areas in the development of intelligent vehicles. They enable, for example, the detection and modelling of interactions between human and the vehicle. In this paper, we quantitatively and qualitatively explore the efficacy of deep learning architectures for the classification and localisation of 29 interior and exterior vehicle regions on three novel datasets. Furthermore, we experiment with joint and transfer learning approaches across datasets and point out potential applications of our systems. Our best network architecture achieves an F1 score of 93.67 % for recognition, while our best localisation approach utilising state-of-the-art backbone networks achieve a mAP of 63.01 % for detection. The MuSe-CAR-Part dataset, which is based on a large variety of human-car interactions in videos, the weights of the best models, and the code is publicly available to academic parties for benchmarking and future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源