论文标题

$(\ mathrm {sl}(2,\ mathbb {r})/γ_0)的稀疏等级结果^n $

A sparse equidistribution result for $(\mathrm{SL}(2,\mathbb{R})/Γ_0)^n$

论文作者

Vishe, Pankaj

论文摘要

令$ g = \ mathrm {sl}(2,\ mathbb {r})^n $,让$γ=γ_0^n $,其中$γ_0$是$ \ mathrm {Slrm {sl}的共同晶格(2,2,\ mathb {r} $,让$ f(让$ f(mathit as a) $ u(x_1,...,x_n)$表示$ g $中的单位元素,该元素生成标准$ n $ dimensional horosphical子组,由$ 2 \ times 2 $上三角矩阵组成。我们证明,在G/γ$中没有任何$ f $的本地障碍物的情况下,稀疏的子集$ \ { 481 $,独立于$γ_0$的光谱差距。

Let $G=\mathrm{SL}(2,\mathbb{R})^n$, let $Γ=Γ_0^n$, where $Γ_0$ is a co-compact lattice in $\mathrm{SL}(2,\mathbb{R})$, let $F(\mathbf{x})$ be a non-singular quadratic form and let $u(x_1,...,x_n)$ denote the unipotent elements in $G$ which generate the standard $n$ dimensional horospherical subgroup, consisting of $2\times 2$ upper triangular unipotent matrices in each co-ordinate. We prove that in absence of any local obstructions for $F$, given any $x_0\in G/Γ$, the sparse subset $\{u(\mathbf{x})x_0:\in\mathbb{Z}^n, F(\mathbf{x})=0\}$ equidistributes in $G/Γ$ as long as $n\geq 481$, independent of the spectral gap of $Γ_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源