论文标题
近似恢复和相对熵I。
Approximate recovery and relative entropy I. general von Neumann subalgebras
论文作者
论文摘要
我们证明了一个通用恢复通道的存在,该通道的存在大约在v。Neumannsubgergra上恢复状态时,相对熵的变化相对于固定的参考状态很小。我们的结果是对以前的结果的概括,该结果适用于Al junge的Iv。Neumann代数。 [Arxiv:1509.07127]。我们广泛地遵循他们的证明策略,但请在此考虑任意诉Neumann代数,在质上出现新问题。我们的结果取决于其Araki-Masuda $ L_P $规范的某些分析向量的构建和计算/估计。我们对量子无效状况的应用发表评论。
We prove the existence of a universal recovery channel that approximately recovers states on a v. Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous results that applied to type-I v. Neumann algebras by Junge at al. [arXiv:1509.07127]. We broadly follow their proof strategy but consider here arbitrary v. Neumann algebras, where qualitatively new issues arise. Our results hinge on the construction of certain analytic vectors and computations/estimations of their Araki-Masuda $L_p$ norms. We comment on applications to the quantum null energy condition.