论文标题

使用GEO标签事件轨迹的时空点过程对隐式社区进行建模

Modeling Implicit Communities using Spatio-Temporal Point Processes from Geo-tagged Event Traces

论文作者

Likhyani, Ankita, Gupta, Vinayak, K., Srijith P., P., Deepak, Bedathur, Srikanta

论文摘要

通过各种基于位置的服务(例如Foursquare,Twitter和Facebook Place等),用户的位置检查可以生成大量的地理标签事件。这些事件跟踪通常在具有相似兴趣的用户的隐藏(可能重叠)社区中表现出来。推断这些隐性社区对于形成用户概况以改进建议和预测任务至关重要。只有时间stamp的用户痕迹,我们可以找出这些隐式社区以及基础影响网络的特征吗?我们可以使用该网络改进下一个位置预测任务吗?在本文中,我们关注社区检测问题以及捕获潜在的扩散过程,并在连续时间内根据时空点过程提出模型COLAB,但在不使用社交网络连接的情况下,基于其签到的活动,可以同时根据其签到的签到活动来对位置的离散空间进行分散空间,这些空间同时模拟了用户的隐式社区。 Colab捕获了该位置的语义特征,用户对用户的影响以及用户的空间和时间偏好。为了学习用户和模型参数的潜在社区,我们提出了一种基于随机变异推断的算法。据我们所知,这是与活动驱动的隐式社区共同建模扩散过程的首次尝试。我们证明,与从Foursquare Check-Ins收集的Geo标签事件痕迹的最新基于点过程的方法相比,COLAB的位置预测任务最多可提高27%。

The location check-ins of users through various location-based services such as Foursquare, Twitter, and Facebook Places, etc., generate large traces of geo-tagged events. These event-traces often manifest in hidden (possibly overlapping) communities of users with similar interests. Inferring these implicit communities is crucial for forming user profiles for improvements in recommendation and prediction tasks. Given only time-stamped geo-tagged traces of users, can we find out these implicit communities, and characteristics of the underlying influence network? Can we use this network to improve the next location prediction task? In this paper, we focus on the problem of community detection as well as capturing the underlying diffusion process and propose a model COLAB based on Spatio-temporal point processes in continuous time but discrete space of locations that simultaneously models the implicit communities of users based on their check-in activities, without making use of their social network connections. COLAB captures the semantic features of the location, user-to-user influence along with spatial and temporal preferences of users. To learn the latent community of users and model parameters, we propose an algorithm based on stochastic variational inference. To the best of our knowledge, this is the first attempt at jointly modeling the diffusion process with activity-driven implicit communities. We demonstrate COLAB achieves up to 27% improvements in location prediction task over recent deep point-process based methods on geo-tagged event traces collected from Foursquare check-ins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源