论文标题

COVID-19动态模型:一般生物学和国家特定社会特征的平衡识别

COVID-19 dynamic model: Balanced identification of general biological and country specific social features

论文作者

Sokolov, A. V., Sokolova, L. A.

论文摘要

考虑到确定其动态的过程,将数学方程式公认的假设形式化,选择适当的实验和统计材料,并构建数学模型 - 这些是科学研究的典型任务,将复杂的生物社会现象(流行病)分解为其组成部分。一种特定的数据处理方法(平衡的识别)和适当的信息技术使您可以考虑许多模型,确定病毒人类相互作用的一般生物学定律(所有人群共有)以及所考虑的国家(或城市)中流行病管理的特定社会特征。作为初始数据,仅使用新情况。来自不同国家的数据取自官方来源,并以统一的方式处理。获得的未发现感染数量的估计值是较低的估计值。

Breaking a complex bio-social phenomenon (epidemic) into its components, considering the processes that determine its dynamics, formalizing the accepted hypotheses in mathematical equations, selecting appropriate experimental and statistical material, and constructing a mathematical model - those are typical tasks of scientific research. A specific data processing method (balanced identification) and appropriate information technology made it possible to consider a number of models, determine the general biological laws of the virus-human interaction (common to all populations), and the country specific social features of epidemic management in the countries (or cities) under consideration. As the initial data, only new cases are used. Data from different countries is taken from official sources and processed in a uniform way. The obtained estimates of the number of undetected infected are lower estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源