论文标题

利用ML算法以有效检测和预防基于Android的混合应用中JavaScript-XSS攻击

Exploiting ML algorithms for Efficient Detection and Prevention of JavaScript-XSS Attacks in Android Based Hybrid Applications

论文作者

Khalid, Usama, Abdullah, Muhammad, Inayat, Kashif

论文摘要

在安全方面,移动应用程序的开发和分析已成为多年来的活跃研究领域,因为许多应用程序都容易受到不同的攻击。尤其是在过去三年中出现了混合应用程序的概念,因为使用网络语言会在混合移动应用程序中提高某些安全风险,因为它会在应用程序中注入恶意代码,因此在混合移动应用程序中提高了某些安全风险。 WebView是混合移动应用程序中的重要组件,用于实现沙盒机制,以保护智能手机设备的本地资源免受JavaScript的未经授权访问。但是,WebView应用程序接口(API)也存在安全问题。例如,攻击者可以通过访问应用程序的公共方法绕过沙盒安全性,通过JavaScript代码攻击混合应用程序。跨站点脚本(XSS)是最受欢迎的恶意代码注入技术之一,用于通过JavaScript访问应用程序的公共方法。这项研究提出了使用最先进的机器学习(ML)算法在混合应用中检测和预防XSS攻击的框架。攻击的检测是通过利用注册的Java对象功能来执行的。数据集和样本混合应用程序是使用Android Studio开发的。然后,使用广泛使用的工具包Rapidminer已用于经验分析。结果表明,基于整体的随机森林算法的表现优于其他算法,并且可以达到高达99%的精度和F测量。

The development and analysis of mobile applications in term of security have become an active research area from many years as many apps are vulnerable to different attacks. Especially the concept of hybrid applications has emerged in the last three years where applications are developed in both native and web languages because the use of web languages raises certain security risks in hybrid mobile applications as it creates possible channels where malicious code can be injected inside the application. WebView is an important component in hybrid mobile applications which used to implements a sandbox mechanism to protect the local resources of smartphone devices from un-authorized access of JavaScript. However, the WebView application program interfaces (APIs) also have security issues. For example, an attacker can attack the hybrid application via JavaScript code by bypassing the sandbox security through accessing the public methods of the applications. Cross-site scripting (XSS) is one of the most popular malicious code injection technique for accessing the public methods of the application through JavaScript. This research proposes a framework for detection and prevention of XSS attacks in hybrid applications using state-of-the-art machine learning (ML) algorithms. The detection of the attacks have been perform by exploiting the registered Java object features. The dataset and the sample hybrid applications have been developed using the android studio. Then the widely used toolkit, RapidMiner, has been used for empirical analysis. The results reveal that the ensemble based Random Forest algorithm outperforms other algorithms and achieves both the accuracy and F-measures as high as of 99%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源