论文标题

一种简单的计算方法,用于通过Laplace-Adomian分解方法易感感染的恢复(SIR)流行病模型

A simple computational approach to the Susceptible-Infected-Recovered (SIR) epidemic model via the Laplace-Adomian Decomposition Method

论文作者

Harko, Tiberiu, Mak, Man Kwong

论文摘要

易感感染的(SIR)流行模型被广泛用于研究传染病的传播。即使是该模型的精确解决方案也可以以精确的参数形式获得,以便与流行病学数据进行比较,对SIR隔室时间演变的简单而高度准确的表示非常有用。在本文中,我们通过使用Laplace-Adomian分解方法来求解模型的基本演化方程,从而获得了SIR模型解的串联表示。溶液以无限序列的形式表达。将SIR隔室时间演变的串联表示与模型的确切数值解相提并论。我们发现,在仅包含三个术语的Laplace-Adomian半分析解决方案与数值结果之间存在良好的一致性。

The Susceptible-Infected-Recovered (SIR) epidemic model is extensively used for the study of the spread of infectious diseases. Even that the exact solution of the model can be obtained in an exact parametric form, in order to perform the comparison with the epidemiological data a simple but highly accurate representation of the time evolution of the SIR compartments would be very useful. In the present paper we obtain a series representation of the solution of the SIR model by using the Laplace-Adomian Decomposition Method to solve the basic evolution equation of the model. The solutions are expressed in the form of infinite series. The series representations of the time evolution of the SIR compartments are compared with the exact numerical solutions of the model. We find that there is a good agreement between the Laplace-Adomian semianalytical solutions containing only three terms, and the numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源