论文标题

基于现有重建方法的定量比较,优化的$α$ forest倒置工具

An Optimized Ly$α$ Forest Inversion Tool Based on a Quantitative Comparison of Existing Reconstruction Methods

论文作者

Müller, Hendrik, Behrens, Christoph, Marsh, David James Edward

论文摘要

我们对从LY $α$ Forest Flux中的准线性状态中重建物质密度场重建最突出的反转方法进行了相同的比较。此外,我们提出了在数值优化框架中完善重建的途径。我们将这种方法应用来构建一种新型的混合方法。到目前为止,用于物质重建的方法是Richardson-Lucy算法,一种迭代的高斯方法和统计方法,假设物质与通量之间有一对一的对应关系。我们研究了这些方法用于高光谱分辨率,以使热拓宽变得相关。在综合数据(由对数正态方法生成)的性能,准确性,对噪声的稳定性以及对系统不确定性的鲁棒性进行比较。我们得出的结论是,迭代性高斯 - 纽顿方法提供了最准确的重建,特别是在小S/N处,但也具有最大的数值复杂性,并且需要最强的假设。其他两种算法更快,在小噪声级别上相当精确,并且在统计方法的情况下,对关于播层间介质(IgM)热历史的不准确假设更加牢固。我们使用这些结果来完善使用正则化的统计方法。我们的新方法具有较低的数值复杂性,并且对IGM的历史记录几乎没有假设,即使IGM的热历史记录尚不清楚,也被证明是小S/N处最准确的重建。我们的代码将通过https://github.com/hmuellergoe/reglyman公开提供。

We present a same-level comparison of the most prominent inversion methods for the reconstruction of the matter density field in the quasi-linear regime from the Ly$α$ forest flux. Moreover, we present a pathway for refining the reconstruction in the framework of numerical optimization. We apply this approach to construct a novel hybrid method. The methods which are used so far for matter reconstructions are the Richardson-Lucy algorithm, an iterative Gauss-Newton method and a statistical approach assuming a one-to-one correspondence between matter and flux. We study these methods for high spectral resolutions such that thermal broadening becomes relevant. The inversion methods are compared on synthetic data (generated with the lognormal approach) with respect to their performance, accuracy, their stability against noise, and their robustness against systematic uncertainties. We conclude that the iterative Gauss-Newton method offers the most accurate reconstruction, in particular at small S/N, but has also the largest numerical complexity and requires the strongest assumptions. The other two algorithms are faster, comparably precise at small noise-levels, and, in the case of the statistical approach, more robust against inaccurate assumptions on the thermal history of the intergalactic medium (IGM). We use these results to refine the statistical approach using regularization. Our new approach has low numerical complexity and makes few assumptions about the history of the IGM, and is shown to be the most accurate reconstruction at small S/N, even if the thermal history of the IGM is not known. Our code will be made publicly available under https://github.com/hmuellergoe/reglyman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源