论文标题

单位限制,量子速度限制和高斯SOLOVAY-KITAEV定理的能量约束歧视

Energy-constrained discrimination of unitaries, quantum speed limits and a Gaussian Solovay-Kitaev theorem

论文作者

Becker, Simon, Datta, Nilanjana, Lami, Ludovico, Rouzé, Cambyse

论文摘要

我们研究了作用于无限维量子系统的单一通道之间的能量约束(EC)钻石规范距离,并建立了许多结果。首先,我们证明两个单一渠道之间的最佳EC歧视不需要使用任何纠缠。扩展ACín的结果,我们还表明,即使在此EC环境中,也有限数量的并行查询以实现零误差歧视。其次,我们采用EC钻石规范来研究一种新型的量子速度极限,该量子限制适用于成对的量子动力学半群。我们希望这些结果与基准量子设备的内部动力学相关。第三,我们建立了solovay-kitaev定理的一个版本,该版本适用于有限数量的模式,该版本适用于高斯单位的组,相对于光子钻石标准,相对于光子数字汉密尔顿人,近似误差是相对于EC钻石标准的。

We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on possibly infinite-dimensional quantum systems, and establish a number of results. Firstly, we prove that optimal EC discrimination between two unitary channels does not require the use of any entanglement. Extending a result by Acín, we also show that a finite number of parallel queries suffices to achieve zero error discrimination even in this EC setting. Secondly, we employ EC diamond norms to study a novel type of quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to be relevant for benchmarking internal dynamics of quantum devices. Thirdly, we establish a version of the Solovay--Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with the approximation error being measured with respect to the EC diamond norm relative to the photon number Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源