论文标题

学习任务和运动计划的机器人技能的组成模型

Learning compositional models of robot skills for task and motion planning

论文作者

Wang, Zi, Garrett, Caelan Reed, Kaelbling, Leslie Pack, Lozano-Pérez, Tomás

论文摘要

这项工作的目的是通过学习使用感觉运动原始素来解决复杂的长滑操纵问题,从而增强机器人的基本能力。这需要灵活的生成计划,该计划可以结合新型组合中的原始能力,从而在各种问题中概括。为了按照原始行动进行计划,我们必须采取行动的模型:在什么情况下执行这一原始性会成功实现世界上的某些特殊效果? 我们使用并开发出新的改进,以实现主动学习和抽样的最新方法。我们使用高斯流程方法来学习从少量昂贵的培训示例中对技能效率的限制。此外,我们开发了有效的自适应抽样方法,以生成在计划期间的连续候选控制参数值(例如杯子的浇注航路点)的全面和多样化的序列。这些价值成为传统运动计划者的最终效果目标,然后解决了执行技能的完整机器人运动。通过结合使用学习和计划方法,我们利用了每种方法的优势,并计划各种复杂的动态操纵任务。我们在集成系统中演示了我们的方法,将传统的机器人原语与使用高效的机器人任务和运动计划者相结合。我们通过测量所选原始作用的质量来评估模拟和现实世界中的方法。最后,我们将集成系统应用于各种长马模拟和现实的操纵问题。

The objective of this work is to augment the basic abilities of a robot by learning to use sensorimotor primitives to solve complex long-horizon manipulation problems. This requires flexible generative planning that can combine primitive abilities in novel combinations and thus generalize across a wide variety of problems. In order to plan with primitive actions, we must have models of the actions: under what circumstances will executing this primitive successfully achieve some particular effect in the world? We use, and develop novel improvements on, state-of-the-art methods for active learning and sampling. We use Gaussian process methods for learning the constraints on skill effectiveness from small numbers of expensive-to-collect training examples. Additionally, we develop efficient adaptive sampling methods for generating a comprehensive and diverse sequence of continuous candidate control parameter values (such as pouring waypoints for a cup) during planning. These values become end-effector goals for traditional motion planners that then solve for a full robot motion that performs the skill. By using learning and planning methods in conjunction, we take advantage of the strengths of each and plan for a wide variety of complex dynamic manipulation tasks. We demonstrate our approach in an integrated system, combining traditional robotics primitives with our newly learned models using an efficient robot task and motion planner. We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions. Finally, we apply our integrated system to a variety of long-horizon simulated and real-world manipulation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源